Step of Proof: equiv_rel_self_functionality
12,41
postcript
pdf
Inference at
*
1
1
1
I
of proof for Lemma
equiv
rel
self
functionality
:
1.
T
: Type
2.
R
:
T
T
3.
a
:
T
.
R
(
a
,
a
)
4.
a
,
b
:
T
.
R
(
a
,
b
)
R
(
b
,
a
)
5.
a
,
b
,
c
:
T
.
R
(
a
,
b
)
R
(
b
,
c
)
R
(
a
,
c
)
6.
a
:
T
7.
a'
:
T
8.
b
:
T
9.
b'
:
T
10.
R
(
a
,
b
)
11.
R
(
a'
,
b'
)
12.
R
(
a
,
a'
)
R
(
b
,
b'
)
latex
by ((((((FHyp 4 [10])
CollapseTHENM (FHyp 5 [13;12]))
)
CollapseTHENM (FHyp 5 [14;11]))
)
Co
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 4:n)) (first_tok :t
C
) inil_term)))
latex
C
.
Definitions
t
T
,
P
Q
,
x
:
A
.
B
(
x
)
origin